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ABSTRACT 

We present a procedure that determines the law of a random walk in an 

lid random environment as a function of a single "typical" trajectory. We 

indicate when the trajectory characterizes the law of the environment, and 

we say how this law can be determined. We then show how independent 

trajectories having the distribution of the original walk can be generated 

as functions of the single observed trajectory. 

1. I n t r o d u c t i o n  

Suppose you are given a "typical" trajectory of a random walk in an iid random 

environment. Can you say what the law of the environment is on the basis 

of the information supplied by this single trajectory? Can you determine the 

law of the walk? Such questions may arise if one intends to use the random 

environment model in applications. 

These questions are essentially pointless if the group is finite (in which case 

the environment at each of the finitely many sites that  happen to be visited 

infinitely many times can of course be determined, but it is hard to say much 

more). So we assume that  the group is infinite, and we go a little further: 

we assume that  the (random) set of sites visited by the walk is almost surely 

infinite. (See Remark 5.1.) 

Questions of this kind have been studied in the context of random walks in 

random scenery by Benjamini and Kesten [1], L5we and Matzinger [3], and 

Matzinger [7]. 
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In the case of an iid random environment, the information furnished by a 

single "typical" trajectory tells us whether the walk is recurrent; indeed, one 

can show that  one of the events {each visited site is visited infinitely many 

times}, {no site is visited infinitely many times} is an almost sure event. (Cf. 

Kalikow [4].) 

Now, if the walk is recurrent, the problem is quite simple: we can know much 

more than the law of tile environment, because we find the environment i tsel f  at 

each visited site, which is given by the frequency of each possible jump from this 

site. In the transient case, the "naive" approach consisting of doing statistics on 

sites which have been visited many times cannot be utilized directly, since the 

assumption of being at a site which has been frequently visited introduces a bias 

on the environment at that site, which should encourage jumps to sites from 

which it is easier to come back (loosely speaking, close sites). (See Example 1 

in w 

We present a procedure that  eliminates any source of bias, collecting informa- 

tion on sites displaying some specified "histories". Each such "history" which 

can be encountered is  almost surely encountered infinitely often (Proposition 

3). This is combined with an interpretation of the process as a transition rein- 

forced random walk (cf. Enriquez and Sabot [2]), allowing us to find the exact 

law of the process. Now, there may exist "bad" transitions: if the walk jumps 

from a site along a "bad" transition, it will never get back to that  site. If the 

set of these "bad" transitions is empty or has just one element, we can find the 

distribution of the environment (Theorem 1). 

Finally, we show how countably many independent trajectories having the 

distribution of the original walk can be generated by concatenating steps of the 

observed trajectory. The algorithm is purely "mechanical": it does not imply 

any computation, and, in particular, the knowledge of the law of the walk (or 

of the environment) is not needed. 

2. Framework and nota t ions  

Our "canonical" process X := (X~)n>0 walks on a group G. We denote by 

(~-7~)~_>o the natural filtration of X. 

We assume that  tile group G is Abelian, although this is never  used in our 

arguments. Its only utility is in the possibility of writing things like x - y = e 

or x = y + e indifferently. 

We use the additive notation, and the identity element of G is denoted by 0. 

We assume, moreover, that  the group G is countable. This assumption can 
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be dispensed with - -  see Remark 5.2 but we feel that  it renders the reading 

easier and the discussion more tractable. It does not affect the core of the 

argument. 

We denote by N the set {1, 2 , . . .} .  

2.1. RANDOM WALKS IN RANDOM ENVIRONMENT. We denote by P the set 

of non-negative families p := (Pe)eCG such that  ~'~eEc Pe = 1. The environment 

at the site x, u(x) := (u(x,e))e~G, is a random element of P.  We assume 

that  the environments at sites are iid P-valued random variables with common 

distribution #. 

We let ue := u(0, e). 

The random environment u := (u(x))xea is a random element of pa, and it 

is governed by the probability measure #| 

For all 7r = ((zr(x, e))eca)xcG E p a  let Q .  be the probability measure under 

which X is a G-valued Markov chain started at 0 whose transition probability 

from x to x + e is zr(x,e) (x,e C G). 

The law of the random walk in random environment (or the so-called 

"annealed" law) is the probability measure P" = f Q~p| (= E[Q,],  Q ,  

being what is usually called the "quenched" law). 

We recall our "infinitude assumption" according to which the (random) set of 

sites visited by the walk, S := {Xnl n _> 0}, is Pg-almost surely infinite. (This 

implies, of course, that  the group G itself is infinite.) 

We let E denote the set of those g E G such that  the probability of the event 

{ug > 0} is strictly positive. (The random set {Xn+l - Xn] n _> 0} is easily 

seen to be P"-a lmost  surely exactly E.) We then partit ion E into two sets, R 

and T, defined as follows. 

�9 R is the set of elements r of E that  can be written as - ( e l  + . . .  + en) 

where (ei)l<i<n is a finite nonempty sequence of elements of E.  It is easy 

to see that  r E R if and only if P•(X1 = r and, for some n > 1, Xn = 0) 
> 0; and Proposition 3 below implies that  if r E R, then the random set 

{n I X~+I = Xn + r and, for some k > 0, X~+k = Xn} is P"-a lmost  surely infi- 

nite. It is therefore quite easy to identify R when observing a single trajectory. 

�9 T is the complement of R in E.  It represents the "possible" transitions which 

do not allow a return to the original site. 

2.2. HISTORIES. We start  with some definitions. 

Definition 1: The h i s t o r y  o f  t h e  s i te  x a t  t i m e  n, which we denote by 

H(n, x), is the random finite sequence of elements of G defined by the successive 
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moves of the process from the site x before time n. More formally, H(0, x) is 

the empty sequence 0; H(n + 1,x) = H(n,x) if Xn 7 ~ x; and, if Xn = X, then 

H(n + 1, x) is the finite sequence obtained by adjoining Xn+a - Xn as a new 

rightmost term to H(n, x). 

Let us denote by (Z~)0 the set of families (ng)gco 6 Z+ a with a finite number 

of non null terms. 

Definition 2: The unordered  h is tory  of the  site x at t ime n, denoted by 

2V(n,x) := (Ng(n,x))gsG, is a random element of (z+G)0 where, for all 9 6 G, 

Ng(n, x) is the random number of moves from the site x to x + g before time n. 

In other words, Ng(n,x) = ~ = 1  l{x,=x,x,+l-x,=9}. 

Also, the local unordered  h is tory  at  t ime n is the unordered history of 

the site Xn at time n, N(n) := 2V(n, Xn). 

2.3. REINFORCED RANDOM WALKS. A transition reinforced random walk 

consists of a discrete random process whose transition probabilities from the 

currently occupied site are functions of the number of past moves of each type 

from that site. 

Definition 3: A re inforcement  funct ion is a function 

v: (Z )o --+ 

= (rtg)9E G ~ V ( ~ )  := (Ve(~))eEG. 

Definition 4: We call a t rans i t ion  reinforced r andom walk with  rein- 

forcement  funct ion V the random walk defined by the law pV on the trajec- 

tories starting at 0 given by 

pV(xn+l  - X~ = e] ~n) = V~(2V(n)). 

Keane and Rolles [5] considered a special kind of reinforcement (see section 

4.3 below). Pemantle [8] considered an essentially equivalent process. (While 

Keane and Rolles deal with reinforcement of oriented edges of graphs, Pemantle 

studies reinforcement of non-oriented edges of trees. It can be shown that the 

replacement of each edge in Pemantle's model by a couple of oriented edges with 

opposite orientations and with appropriate initial weights results in a process 

indistiguishable from the original one.) 
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3.1. R W R E  AS A TRANSITION REINFORCED RANDOM WALK. Viewing some 

specific transition reinforced random walks as random walks in random envi- 

ronment is already present in Pemantle [8] and in Keane and Rolles [5]. 

In order to get a non-biased procedure of reconstitution of the environment, 

it is useful to adopt an alternative philosophy, viewing random walks in random 

environment as transition reinforced random walks. This is the essence of the 

easy part  of the result of Enriquez and Sabot [2] which we now state. (The 

other part  of [2] gives the conditions on a reinforced random walk to correspond 

to a RWRE. Note that  what we call here transition reinforced random walk is 

called edge-oriented reinforced random walk in [2].) 

PROPOSITION 1: The annealed law P" of the RWRE coincides with the law 

pV of the reinforced random walk whose reinforcement function V satisfies, for 

abe C G, 

= 
E[Hgea  u~ g] 

w h e n e . e r  e (Z )0 s . c h  that  > 0. 

In order to be self-contained we recall the proof of this proposition. 

Proof: For every x and e in G, for all n C N, P ' - a lmos t  everywhere on the 

event {Xn = x}, 

E[u(x, e)l-Iyea Ylgca u(y, g)ng(n,y)] 
P" (Xn+I  = x + e I 9c~) = 

E[1-Iyea l-[gea u(y, g)~,(n,y)] 

Now using the independence of the random variables u(y) for different sites 

y, the terms depending on u(y) for y r x cancel in the previous ratio, and we 

get the result. | 

The following result is an analogue of the strong Markov property for rein- 

forced random walks. 

PROPOSITION 2: Let X be a reinforced random walk with reinforcement func- 

tion V, and let T be a stopping time with respect to the natural filtration of X.  

Assume T is almost surely finite. Then 

pv(XT+I - XT -= e I i]~T) = Ve(N(T)) pV-a.s. 

The proof is obtained in an obvious way, by considering the events {T = n}. 
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3.2. A ZERO-ONE RESULT. The following zero-one result happens to be quite 

useful. 

PROPOSITION 3: Let ( r l , . . .  ,rl) be a finite (eventually empty) sequence of 

elements of R. Let S(~ 1 ..... ~t) be the random set 

{x E C[ ~n _> 0, H(n,x) = ( r l , . . .  ,rl)}. 

Then S(rI ..... r,) is either P"-almost surely empty or P"-almost surely infinite. 

Proo~ Suppose that  S(rl ..... ~.,) is not P ' - a lmos t  surely empty. 

This implies that  there exists a list of transitions 

L : =  ( r  1 , e l ,  1 ~ e 1,2, �9 �9 �9 ~ e l  ,kz,  r 2 ,  (72,1, �9 �9 �9 ~ C2,k2, r3~ . . . . .  , e l -1  ,kt-1, rl)  

such that,  for all m E { 1 , . . . , 1 -  1}, 

and 

k m k 

r m + E e m , ~ = O  and, f o r a l l k c { 1 , . . . , k m - 1 } ,  r m + E e m # # O  
i=1  i=1  

~ : =  E [  /]r~ E [ m l - I 1  l](rrn q - e m , l - ~ - " ' - 4 - e m , i ~ e m , i - t - 1 )  
k = l  -- i=1  

> 0 .  

(Note that  if r,~ = 0, then k m =  0.) 

Let q := l + kl + .. �9 + kt-1 be the length of the list L. 

For all k E {1, . . .  ,q}, denote by Yk the k-th term of the list L and, for all 
k - 1  

k E { 1 , . . . , q + l } , s e t x k : = ~ i = l  Yi. (Xl =0 . )  
Now consider the list (gl,g2,...) of newly visited sites in their order of 

appearance. So S = {gl,g2,.. .}.  By the assumption made in the introduc- 

tion, ,S is almost surely infinite. 

To any integer n _> 1, we associate a random integer i(n) defined by 

i(n) := min{i _> 1[ 3k C {1 , . . . ,q} ,g i  = g= +Xk}. 

We denote by k(n) the random smallest integer m _> I such that  gi(n) = gn+x~. 
(Obviously, k(n) <_ q.) The sequence (gi(n))n>_l takes infinitely many values 

(since the infinite set $ is included in {g~(1), gi(2),...} - {Xl , . . . ,  Xq}). Now, for 

any i >_ 1, we denote by Ti the hitting time of gi by the walk. By definition of 

i(n), none of the sites gi(n) -Xk(n) q-xj (1 <_ j _< q) is visited by the trajectory 

before time Ti(n). 
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As a result, there exist infinitely many sites g~, g~,. . ,  visited by the trajectory 

(enumerated in their order of appearance) such that, for some k E {1 , . . . ,  q}, if 
! 

Tn ~ denotes the hitting time of g~n, then none of the sites g n - x k  + x j  (1 _~ j < q) 

is visited by the trajectory before time Tn ~. We denote by k ' (n)  the least such 

integer k. T~ are clearly stopping times. 

For all n _> 1, let ~u be the Bernoulli variable that equals 1 if and only if 

S gin --  X k ' ( n )  q- X i §  if 1 < i < q - k~(n), 
XT ,  +i 

. --~ ~ gr  n Xk,(n ) -}- Xi_k,(n)_ q if q -- k ' (n)  < i ~ 2q - k ' (n)  + 1. 

(Otherwise, ~bn equals 0.) 

Observe that  for all n, if Cn = 1, then X ~ ,  - Xk,(~) C S(rl ..... ~). 

Due to the fact that the prescribed path the process has to follow during the 

r r _ 1] in order to satisfy ~n 1 is a path that time period [T~, T n + 2q k ~(n) + = 

does not intersect the trajectory before Tn ~ , 

P ( r  = 11 ~-T:,) _~ E V(Xk,Yk)) 2 _> E V(xk,yk) = 7 2. 
k = l  J k = l  

Let ~ := ~(2q+l)n and Vn = T' (n > 1) (2q+l)n - -  " 
For all n, ( 1 , . . . ,  (n are measurable with respect to $'~.+1. 

It is now obvious that for all n, k _> 1 

P ( ~ n + l  . . . . .  ~n+k : 0) ----P(~n+l = 0) • P (~n+2  : 01 ~nq-1 ---- 0) X ' ' '  

""  • P(~n+k ---- 0] ~n+l . . . . .  ~n+k-1 = O) 

___(1 _ ~ 2 ) k .  

Therefore, almost surely, infinitely many of the Cn's are equal to 1. This implies 

that S(~ ..... ~) is almost surely infinite. | 

Remark:  If G equals Z d, the notion of convexity can be exploited in a proof 

slightly different from the one given above. 

We deduce that the sets R and T can be "viewed" on the trajectory: 

COROLLARY 1: The  sets R and T are such that 

R%S{g E E [  S(g) is infinite}%S{g E E I S(g) # 0} and Ta'J{g E El S(g) = 0}. 

Let S~ denote the random set {x E G I 2n > 0, .N(n,x) = 4}. An easy 

corollary of the above proposition is the following analogous result concerning 

unordered histories. 



212 O. ADELMAN AND N. ENRIQUEZ Isr. J. Math. 

PROPOSITION 3': If  g E (Z+O)O, then S~ is either P'-almost surely empty or 
P'-almost surely infinite. 

We now distinguish a particular subset of (Z+~ 

Nposs := {ff e (Z+~ S~ r 0 PU-a.s.}. 

Loosely speaking, Afposs is the set of "possible" unordered histories for sites that  

are presently occupied. An element ff = (ng)geo of (Z+~ belongs to Afposs if 

ng = 0 whenever g ~ R and if, moreover, it satisfies (any one of) the three 

following equivalent conditions: 

(a) P " ( 3 n  > Ol > o; 
(b) the random set S~ is almost surely infinite; 

(c) E[1-Ir~R u n'] > O. 
Note that,  by (c) and Proposition 1, the law of the process is determined by 

the restriction of the reinforcement function to the set Hposs. 

4. W h a t  a single t r a j e c t o r y  tel ls  

In the sequel we assume that  the law of the process X is P "  (or, equivalently, 
pV). 

4 .1 .  DETERMINING THE LAW OF THE WALK. As n o t e d  in  t h e  introduction, 
"straightforward" computation based on the frequencies of transitions from sites 

visited "many" times is not reliable. The following example is an illustration of 

this fact in the context of a deterministic environment. 

Example 1: The process X is a nearest-neighbour random walk on Z: for some 

fixed p C]0, 1[, for all x C Z, u(x, 1) = p and u(x, -1)  = 1 - p. One might think 

that  if n C N is very large and x is some fixed site in Z then, conditionally on 

the event {x is visited at least n times}, the proportion of the transitions from x 

to x + 1 among the first n transitions from x is likely to be close to u(x, 1) (i.e., 

to p); but this is far from being the case. Indeed, conditionally on the event {x 

is visited at least n times}, the first n - 1 transitions from x are easily seen to 

be iid and uniformly distributed on {-1,  1 }, so the proportion mentioned above 

is likely to be close to �89 and this is the case independently of the value ofp. 
What we do here, instead, is collecting information on sites displaying some 

specified histories (or specified unordered histories). 

For any ff E Afposs, let T [  (i _> 1) be the successive times where the un- 

ordered history of the currently occupied site is ~: 
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�9 Tff  := inf{k _> 0[ 2V(k) = if}, 

�9 gi _> 0 ,T~I  := inf{k > Tff[ AT(k) = ~7}. 

(We ignore the case (happening on the negligible event {S~ is finite}) where 

some Tff is infinite.) 

PROPOSITION 4: The E-valued random variables A~7 := X%~+1 - X T ~  
(i >_ 1, ff E N'poss) are independent. Also, for all ~ E .~poss, the random 
variables A ~ have the same law: 

Ve�9 p(A~7=e)=V~( f f ) .  

Proo~ Let O~ (i _> 1, ff �9 (g+C)o) be independent random variables such that 

for all e E E, 

P(O~ = e) = Ve(ff). 

Now we consider the process (Yn)n>_O: 

Yo = O, Yn+l = Yn + oN((~ ) , 

where hTy is to the process Y what ~r is to the process X, and 

v(n) := eard{j �9 {0, . . .  ,n}l Ny(j) = ]Vy(n)}. 

We have 

P(Yn+I = Yn + el o(Yk, k <_ n)) 

= P ( O ~ )  ~) = el a(Yk,k 5_ n)) 

= E l  ~-~ l (~)=z,~(~)=~lop=el a(Yk,k <_n)]. 
t_>o,rae(Z+)o 

But on the event Al,~,n := {r(n) = l, Ny(n) = rS}, O~ is independent of 

a(Yk, k <_ n). Thus, 

P(Yn+I = Yn + el a(Yk, k <_ n)) = E 
l>o,~c(z% 

= E 
z_>o,~c(z%, 

= Vr 

lr(n)=l,firy(n)=r~ E[loi'=e] 

l~(n)=l,~(n)=~ Ve(r5) 

Consequently, the two processes X and Y have the same law. But A~ is to the 

process (Xn)n>O exactly what O~ is to the process Y. The result follows. II 
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We deduce from this proposition the following corollary, which describes the 

construction of the reinforcement function on Af;os~ or, equivalently (by Propo- 

sition 1), of the annealed law: 

COROLLARY 2: I1f ~ E N'poss, then almost surely, for all e 6 E, 

lzx~=e + . . .  + 1A~=~ 
-~  V~ ( ~ ) as  m -~  oo . 

m 

4.2. THE LAW OF THE ENVIRONMENT. The next result follows easily. 

THEOREM 1: (a) A single trajectory determines almost surely the moments of 

the form E,[u~I~ . . . v ~ v ~ ]  for all rl .. rk 6 R, t e T, n l , . .  ,nk 6 Z+, e = 0 
k ' "' " 

or 1. Moreover, if these moments coincide for two distinct environment distri- 

butions, the induced R W R E  have the same annealed law (and, consequently, 

two such environment distributions cannot be distinguished). 

(b) f f c a r d T  = 0 or 1, a single trajectory determines almost surely the distri- 

bution of the environment. 

Proof." (a) By Corollary 2, the restriction of V to Af;oss is almost surely de- 

termined by a single trajectory. So, for all ~ = (ng)gco E N'poss and for all 

e E G, a single trajectory determines the moments E[(1-Igee v~ ~) �9 re] almost 

surely. Moreover, all the other moments of the type Eu[vn~ . . .  vn~!:v[] (rj 6 R, 

t E T) are zero. Finally, the restriction of V to Afposs determines the law of the 

process. 

(b) If cardT = 0, we get all the moments of the ue's. Since these variables 

are compactly supported variables, this determines all the finite dimensional 

marginals of the distribution of v.* 

If card T = 1, we get all the moments involving the vr's. And if t is the unique 

element of T, then vt = 1 - ~ r e R  v~, and we get all the moments of v. I 

When cardT _> 2 the law of the environment can be determined in some cases, 

but not in general. (Accordingly, Corollary 1 of [2] should be amended; it holds 

in fact if card T _< 1, but not in complete generality.) Here are two examples: 

* We recall a standard fact: if U1,..., Ul are positive random variables such that, 
almost surely, U1 + - . .  + Ul < 1, then, for Lebesgue-almost all (a l , . . . ,  al) 6 R z, 

P(U1 < a l , . . . ,Ut  < at) 

n!  E [ ( 1  - U1 . . . . .  Ut) k~ U k l . . .  U~']. ---- l i m  E ko!---kl! 
k 0 . . . . .  k l > O  

k O + . . . + k l = n  
A: 1 / n . < a  1 . . . . .  k I / n < a  I 
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Example 2: We consider the two following walks on Z: 

�9 The first one has a deterministic environment, and moves from x E Z with 
1 1 probability 7 to x + 1, with probability 7 to x + 2. 

�9 The environment in the second walk is coin-tossed independently at each site 

x E Z: with probability 1 7, the transition probability to x + 1 is 1, and with 

probability 1 ~, the transition probability to x + 2 is 1. 

Here T = {1, 2}, and, obviously, the two walks have the same law. 

Example 3: Again, G = Z; for any x E Z, with probability 1 ~, the transition 

probability from x to x is equal to 1, and the transition probability from x to 

x + 1 is also equal to �89 and, with probability 1 7, the transition probability from 

x to x + 2 is equal to 1. In this case, T = {1, 2}, but the distribution of the 

environment is almost surely completely determined by the single trajectory we 

observe. 

We can only see 0-transitions (from a site x to itself), 1-transitions (x ~ x +  1) 

and 2-transitions (x -~ x + 2). Hence #, which is the law of u(0), is such that  

#(u0 + ul + u2 = 1) = 1. The fact that  a 0-transition is never followed by a 

2-transition tells us that  if u2 > 0, then u0 = 0. Statistics on sites from which 

there are 0-transitions or 1-transitions reveals that  the (conditional) distribution 

of the number of 0-transitions from such a site is geometric. But a geometric 

distribution cannot be a nondegenerate convex combination of geometric distri- 

butions, and the conditional number of 0-transitions from a visited site x for 

which u(x, 0) is given (and is in ]0, 1[) has a geometric distribution. We deduce 

that  there is exactly one value a (= ! )  such that  almost surely, for all x E Z, 2 
if u(x,O) # 0, then u(x,O) = a. And a simple computation shows that  the 

proportion of visited sites from which a 0-transition is possible but does not 

take place fits exactly with the proportion of visited sites from which the first 

(and unique) transition is a 1-transition; so # ( ~  > 0 and us > 0) -- 0. We 

deduce that  p is a convex combination o f p  t and #2, where p l (u  o = u~ = �89 = 1 

and p2 (u2 = 1) = 1. And the coefficients in this convex combination are easily 

determined (and, of course, both coefficients equal �89 

4.3. EFFICIENCY. Generally speaking, the efficiency of the approach described 

in 4.2 depends on the asymptotic behaviour of the number of sites visited by 

the walk up to time n: even a perfect knowledge of the environments at these 

sites will only give a vague idea of the law, if the visited sites are very few. 

The study of nearest-neighbour random walks on Z sheds some light on the 

variety of possible situations. We restrict our study to the case where ul is 

known to follow some beta distribution whose parameters are unknown, i.e., for 
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some unknown real numbers a, fl > 0 

F(a  +/3) ~o t xa_l (  1 _ x)Z_ld x P(~'I �9 [0, t]) - r(~)r(/3) 

This corresponds to the reinforcement 

where n_ 

the right) 

(o < t < 1). 

V l ( n _ , n + )  = n+ + a  
n_+n++a+/3  

(resp. n+) denote the number of past moves to the left (resp. to 

from the current site. This can be checked by a straightforward 

computation based on Proposition 1. See also Zabell [12], Keane and Rolles [5] 

and Rolles [9] for a Polya urn approach. 

The reinforcement we are considering is present in the following situation: 

from a newly visited site x E Z, the transition x --+ x + 1 has weight a and the 

transition x --+ x - 1 has weight/3. Now, any time a given transition occurs, its 

weight is augmented by one. 

We distinguish three cases: 

CASE 1: a = /3. Our process is a Sinai's walk [6]; it is reccurent and visits, 

during its n first steps, a number of sites of the order of (logn) 2. Among 

these sites, an asymptotically strictly positive proportion is visited at least twice 

before time n. (The asymptotic proportion is in fact 1.) We base our observation 

on these sites. Among them, the proportion of sites from where the two first 

moves of the walk are the same gives an estimator for (a + 1)/(2a + 1). By 

the central limit theorem, we can obtain, with a high probability, a confidence 

interval (at a given level) whose length is of the order of 1 / logn.  

CASE 2: fl < a _< /3 + 1. This was studied by Kesten, Kozlov and Spitzer [6]. 

The process is transient (it walks towards +oc almost surely) and visits, during 

its first n steps, a number of sites of the order of n ~ where 0 < 7 < 1. The 

exponent 7 is an explicit function of the unique positive number ~ satisfying 

S[( b ' l  ) ] : 1, i.e., F(a  - g)F(/3 + ~) = F(a)F(/3) (see [6]). 

In order to estimate a and/3, we make observations on sites of two categories. 

Among the visited sites, the proportion of those from which the first move is to 

the left gives an estimator for /3/ (a  +/3). Among the sites visited at least twice 

from which the first move is to the left, the proportion of those from which the 

second move is also to the left gives an estimator for (/3 + 1)/(a  +/3 + 1). Using 

these two observations, we can estimate a and/3. These two categories of sites 

have both a cardinal of the order of n "r. Again, by the central limit theorem, 
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we can obtain, with a high probability, a confidence interval (at a given level) 

whose length is of the order of 1/n "Y/2. 

CASE 3: a > /3 + 1. This is the so-called ballistic case considered by Solomon 

[11]: for some real constant u > 0, P ( X n / n  -~ u) = 1. We proceed as in Case 

2 to get, with a high probability, a confidence interval (at a given level) whose 

length is of the order of 1/n. 

Remark: The remaining case (/3 > a) splits into obvious analogues of the above 

Case 2 and Case 3. 

Of course, the above discussion is succinct, and it deals with a special family 

of environment. Our aim is just to examplify things; and one cannot hope any 

reasonnably fast algorithm if one does not restrict the search of the law of the 

environment to some "parametrized" family of probability measures. 

4.4 .  SAMPLING IID TRAJECTORIES. Here we show that  infinitely many inde- 

pendent trajectories drawn under P '  can be generated by concatenating steps 

of the single trajectory at our disposal. 

For simplicity, we describe the construction of just two trajectories, X 1 and 

X 2. This is enough, since we can do the following: once X 1 and X 2 are con- 

structed, leave X 1 as it is and extract two trajectories, say X 3 and X 4, out of 

X 2 exactly the way we extracted X 1 and X 2 out of X, then, out of X 4, get X 5 

and X 6, and so on; and the family (X 1, X 3, Xs , . . . )  is exactly what we want. 

All we do is construct X 1 (resp. X 2) using in the "natural" way the transitions 

A~ with i odd (resp. even). More formally, X 1 and X 2 are defined as follows: 

1 1 A/~I (n) 
X 1 : O, X n +  1 : X n + ~ 2 r l ( n ) _ l  , 

where ~1 is to the process X a what N is to the process X, and 

Tl(n) := card{j �9 {0, . . .  ,n}[ A~I(j) = N l ( r t ) } ;  

and, similarly, 
2 2 - -~(n)  

Xg = 0, Xn+ 1 = X n --]-/k2T2(n) , 

where .~2 is to the process X 2 what 3~ is to the process X, and 

72(n) := card{j �9 {0, . . .  ,n}l ~2( j )  = ~2(n)}" 

The validity of this construction is an immediate consequence of Proposition 4. 
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5. R e m a r k s  

O. ADELMAN AND N. ENRIQUEZ Isr. J. Math. 

5.1. INFINITUDE OF S. The "infinitude assumption" (according to which the 

random set S of sites visited by X is almost surely an infinite set) is made 

in order to avoid discussing rather  trivial cases. (If S is finite, then precise 

knowledge of the environment at some sites is almost surely available; but, 

unless some specific conditions are imposed on #, complete knowledge of p is 

out of reach.) 

Proceeding along the general lines of the proof of Proposition 3, one can show 

that  the random set S is either almost surely infinite or almost surely finite. 

5.2. COUNTABILITY OF G. If we abandon the countability assumption on G, 

the set E = {x E GI P(X1 = x) > 0} remains countable, and our sampling 

procedure works just as well. Consequently, P "  can be determined in non- 

pathological situations (and, in particular,  if G is the real line).* (This can also 

be seen by introducing a new kind of reinforcement function which, to a given 

unordered history at a site, associates the probabili ty that  the next transit ion 

falls into some measurable set.) If there is no countable set D C G such tha t  

X1 C D almost surely, then # cannot be determined (as one can see after 

studying the first example of section 4). (If there is some countable set D C G 

such that  X1 E D almost surely then, almost surely, each Xn is in the subgroup 

generated by D; and since this subgroup is countable, all we did is adaptable in 

an obvious way.) 

5.3. STRUCTURE OF G. The choice of dealing with RWRE on a group cap- 

tures, we think, the essence of the matter .  We could have restricted ourselves 

to groups like zd  (or some other subgroups of ll~ d) without a substantial  gain 

in simplicity. A group structure is suitable (though not absolutely indispens- 

able) if the notion of lid random environment is to make sense. We could have 

dealt with RWRE on homogenous spaces, or on some trees, without gaining new 

insight. 

Of course, if G is countable, the a-field we use (without explicitly saying so) is 
the set of all subsets of G; and if G is the real line, we take the Borel a-field on 
the line. But problems may arise if a a-field on G is not specified in advance and 
there is no "natural" a-field on G: the very notion of the law of X is problematic 
(and, in fact, even the notion of the law of X1 does not make much sense). But 
even if a a-field on G is "given", we aren't through. What we want is to be 
able to determine, on the basis of the observation of one realization of a random 
sequence (U1, [/2,...) of iid random variables taking values in G, the probability 
distribution of/-/1. Now if the a-field is generated by some countable ~-system of 
subsets of G, things are all right. Otherwise, there is no general positive result. 
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5.4. ASSUMPTIONS ON THE ENVIRONMENT. The requirement that  environ- 

ment at sites are iid can be loosened in various ways. 

Example: G = Z; there are two laws for the environment at sites, say #0 and 

#1; environments at sites are independent; and v(n) is governed by It0 if n is 

even, by #1 if n is odd. 

Example: G = Z; there are laws/to, #1 , . . .  for the environment at a site; K 

is a random variable taking values in the set {2, 3 , . . .} ;  and, conditioned on K,  

the v(n) are independent and, for all n, u(n) is governed by #n(mod K). 

Example: G = Z; the couples (v (2n) ,v (2n  + 1)) (n C Z) are iid, but v(0) and 

v(1) are not independent. 

5.5. OTHER REINFORCEMENTS. Our results on the determination of the law 

of the process and on sampling iid trajectories can be extended to various other 

transition reinforced random walks that  do not correspond to a random envi- 

ronment. Whenever an appropriate analogue of Proposition 3 is valid, things 

work quite well. (A sufficient condition is strict positivity of the restriction of 

Vr to (Z+n)0 for all real r.) 
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